Kyligence AI 服务 - 让大模型完成准确、可靠的数值计算和回答! 立即了解更多
AI 数智助理
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Kyligence Turbo Kyligence Turbo
指标平台解决方案
OLAP 解决方案
行业解决方案
客户总览
金融
零售
制造
医药
其他
云平台
BI
寻求合作
资源
Kyligence Enterprise
Kyligence Zen
培训
Apache Kylin
Byzer
Gluten
博客
关于
市场活动
转载自雷锋网,作者王刚,2021年8月9日
数字化转型已经成为一个高度抽象的名词,既带动了技术与资本的流动,同时又不经意间裹挟着人们的焦虑:任何做技术与业务的结合?如何最小成本地切入?如何让数据不再成为负债?
数据库的发展似乎提供了不错的思路,但云平台的增多、数据源的繁杂、技术间的整合与平台间的集成难度提升,使得企业数据管理和分析的道路更加曲折:无法寻找到有价值的数据,这让企业在寻找数据上花费的时间远远超过分析数据本身。
由Apache Kylin(一个开源的、分布式的分析型数据仓)创始团队创建的智能数据云平台Kyligence似乎提供了一个不错的思路,这是一家为企业实现自动化的数据服务及管理的厂商,在今年4月完成了7000万美元的D轮融资。
在近日的Data & Cloud Summit 2021 行业峰会上,Kyligence宣布全新“智能数据云"战略,在做强分析能力的基础上增强数据管理能力,以AI进一步替代人工工作,以云原生进一步替代基于 Hadoop 的基础架构,让数据服务与管理发挥核心作用。
Kyligence联合创始人兼CEO韩卿发现,随着数据越来越多,使用端越来越多,数据的搜集与管理变得难上加难;另一方面,企业又希望数据能够多面化,顾及到、赋能到每一个业务人员,这就导致了两者之间不可调和的矛盾愈加明显,越来越混乱。现在的 CIO 已经相当焦虑,找数据的时间远远超过使用数据的时间。
“用1个月时间找数据,分析一下只要2分钟”。现状是企业根本不知道有价值的数据在哪里,以前是没有数据,所以企业希望 IT 把数据全部收集起来;而今天是数据太多、信息过载,企业已经不知道该要什么类型的数据。
“智能数据云,不仅是 Kyligence 近些年在全球市场的业务实践,同时也是对云原生时代下技术发展趋势的思考和总结”,韩卿介绍道,“数据仓库在时代的变革才刚刚开始,新的技术架构、新的使用方式、新的成本结构都将深刻改变这个行业。未来人类使用数据,应当和今天使用云计算一样简单、方便,只需关注数据本身,而无需关注到底在哪个平台上,真正实现数据的随取随用。”
据了解,目前Kyligence 已经支持微软 Azure、亚马逊 AWS 及华为云平台,并在积极布局其他公有云平台 ( 阿里云、腾讯云、谷歌云等等 )。这种支持的背后含义是集成,集成的关系是这些云大厂提供弹性的无限计算和存储资源,Kyligence就是跑在上面的PaaS应用,可以理解为是一种数据中台服务。
随着企业对私有云架构的需求高涨,Kyligence 也正式推出玄武计划,加速下一代基于 Kubernetes 及分布式对象存储等架构的私有云产品落地的进程,Kyligence 将为大型企业级客户提供私有云环境运行 AI 增强数据服务与管理的能力, 目前实验室已经完成了对接和测试。
Kyligence联合创始人兼CTO李扬对雷锋网表示,Kyligence最早的技术比较擅长做统计和聚合性的分析,后来又有明细分析、流式分析的需求,这些不同的分析需求本质是要求底层的数据库系统在灵活性、成本和性能,这些关键的设计要素方面有不同的平衡点。
对于数据,捕获数据并非是Kyligence服务的方向,帮助客户更好提炼和使用其已有的数据则成为Kyligence的强项。其产品有个很大的功能,进入门槛不高,普通人都能做,相对于一般的数据库而言,Kyligence做的是基于业务数据模型的数据库,属于一个多维的、基于业务模型的数据库。
如何降低使用门槛?李扬举了一个例子。
如果你是一位KFC的门店经理,直接打开一个Mysql数据库,是完全看不懂的,因为需要专业的数据库知识。但是,在Kyligence的产品中,门店经理可以看到业务模型,哪些是他关心的?哪些是标签?指标是什么?这个数据库可以组合个性化分析场景,是一个更高级的数据库,打开了普通业务员使用数据的窗口。在这个窗口基础上,业务员可以做很多创新,比如制定更佳的促销方案、评估更合适的代言人等。
对于是否将公司定义成一家纯技术公司,李扬的回答是:是的。Kyligence是一个以技术为核心的产品公司,所以技术的领先性和通用的产品形态是非常明确的,但是解决客户的问题,光靠一个通用的技术产品是不够的,还有管理问题以及数字化转型生态的打造还有很长的路要走,Kyligence也一直积极和拓展合作伙伴生态建设,帮助客户更好完成数字化转型。
数据越来越多,数据越来越重要。Kyligence希望数据能够更好地服务人类,而不是让我们成为它的奴隶。
今年年初,Kyligence 高级副总裁兼合伙人葛双寅(Silas Ge)受邀在阿斯利康“跃行致远三十周年年会
Kyligence MDX 支持创建层级结构。层级结构是基于维度的级别集合,可以显著提升数据分析人员的分析能力。此外,Kyligence MDX 还支持对指定的层级指定权重,方便您自定义成员值的汇总方式。
当订单与销售明细在不同的事实表,千笔订单商品数量如何计算?Kyligence Cloud + Kyligence MDX 三步实现跨事实表分析,带你利用数据更准确地洞察经营状态,如对比不同门店的同期销售状况!
近些年,中国持续不断地从国家战略和政策上鼓励大数据产业的发展,推动各行业积极开展和实施数字化转型战略。《“十四
数据分析日益增长的多样化需求 信息化时代之初,由于大部分员工缺乏大数据相关的技能和培训,分析和解释数据的话语权
数据网格(Data Mesh)是由 Thoughtworks 提出的一种数据域驱动的分析架构,其中数据被视为一
400 8658 757
工作日:10:00 - 18:00
已有账号? 点此登陆
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。
全行业落地场景演示
涵盖金融、零售、餐饮、医药、制造等多个行业,最贴合您的业务需求与场景。
Data + AI 应用落地咨询
与资深技术专家深入交流,助您的企业快速落地 AI 场景应用。
立即预约,您将获得
精准数据计算能力:
接入高精度数值计算大模型服务,为您的企业级AI应用提供强大支持。
个性化业务场景解决方案:
量身定制的计算模型和数据分析服务,切实贴合您的业务需求和应用场景。
Data + AI 落地应用咨询:
与资深专家深入探讨数据和 AI 如何帮助您的企业加速实现应用落地,构建更智能的数据驱动未来。
申请体验,您将获得
体验数据处理性能 2x 加速
同等规模资源、同等量级数据、同一套数据处理逻辑,处理耗时下降一半
专家支持
试用部署、生成数据、性能对比各操作环节在线支持