Kyligence AI 服务 - 让大模型完成准确、可靠的数值计算和回答! 立即了解更多
AI 数智助理
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Kyligence Turbo Kyligence Turbo
指标平台解决方案
OLAP 解决方案
行业解决方案
客户总览
金融
零售
制造
医药
其他
云平台
BI
寻求合作
资源
Kyligence Enterprise
Kyligence Zen
培训
Apache Kylin
Byzer
Gluten
博客
关于
市场活动
现如今,大数据、数据科学和机器学习不仅是技术圈的热门话题,也是当今社会的重要组成。数据就在每个人身边,同时每天正以惊人的速度快速增长,据福布斯报道:到 2025 年,每年将产生大约 175 个 Zettabytes 的数据量。
目前我们所熟知的行业都越来越依赖于对大数据的高级处理和分析,如金融、医疗保健、农业、能源、媒体、教育等所有重要的社会发展行业,然而这些庞大的数据集让数据分析、数据挖掘、机器学习和数据科学面临了巨大的挑战。
数据科学家和分析师在尝试对于海量数据的分析时会面临数据处理流程复杂、报表查询缓慢等问题,但在实践中发现可通过 Apache Kylin 与 Python 的集成解决这一大难题,从而帮助分析师和数据科学家最终获得对大规模(TB 级和 PB 级)数据集的自由访问。
机器学习(ML)工程师和数据科学家在对大数据运行计算时遇到的主要挑战之一是处理更大容量的数据时带来的更大的计算复杂度 。
因此,随着数据集的扩大,即使是微不足道的操作也会变得昂贵。此外,随着数据量的增加,算法性能越来越依赖于用于存储和移动数据的技术架构,同时数据量越大,并行数据结构,数据分区和存储以及数据复用变得更加重要。
Apache Kylin 是一个开源的分布式大数据分析引擎,旨在为 Hadoop上的多维分析(MOLAP)提供 SQL 接口。它允许企业使用和其他大数据分析工具相比更短的的时间快速分析海量数据集。
借助 Apache Kylin,数据团队能够大幅减少分析处理时间以及相关的 IT 和运营成本。它可以通过将大型数据集预先计算到一个(或另一个非常少量)的 OLAP 多维数据集中并将它们存储在列式数据库中来实现查询加速。这使机器学习工程师,数据科学家和分析师能够快速访问数据并执行数据挖掘,轻松发现数据中隐藏的趋势。
下图显示了在引入 Apache Kylin 时,大数据上的机器学习和数据科学活动如何变得更加简单。
目前 Python 风头正盛,作为领先的编程语言之一,凭借其易用性和丰富的库,Python 已经在大数据中被广泛应用。
Python 还提供了大量数据挖掘工具来协助处理数据,同时也提供已经在机器学习和数据科学社区运行的应用程序。简而言之,如果您正在使用大数据,那么 Python 可能会让您的工作变得更轻松。
使用 Kylinpy 库,Apache Kylin 可以轻松与 Python 集成。Kylinpy 是一个提供 SQLAlchemy 方言实现的 Python 库。因此,任何使用 SQLAlchemy 的应用程序现在都可以查询 Kylin OLAP 多维数据集。此外,它还允许用户通过 Pandas 数据帧访问数据。
通过 Pandas 访问数据的示例代码:
数据集:
我们将一个 IMDB 电影数据集(来源:Movielens)导入我们的 Kylin OLAP 多维数据集,并使用 Python 读取数据并执行探索性分析,以便在指定时间段内查找不同流派的电影评级趋势。
目的:
数据生命周期
为了通过 Python 分析数据,使用了 Kylinpy 库并编写了 SQL 来为相关分析提取相关数据。通过 SQL 返回的数据集存储为 Pandas 数据帧,然后对数据帧进行数据处理,以使数据形成适合我们分析的结构。我们利用 Matplotlib 和 Seaborn 库来可视化数据。下图说明了每个阶段的数据生命周期。
分析
让我们首先看一下排名靠前的几部电影。可以看出,前 15 部电影中,除了前 2 部之外,13 部电影的评分人数几乎相同。此信息是相关发现的起点,可以进一步深入查找我们评分人数较高的电影之间的相关性。
同样,下面的柱状图显示了每种流派电影的评分人的性别比较。这显示了男女观影时对不同流派电影的偏好。
从下面的相关矩阵(热图)中,我们可以说出观影人职业和电影流派之间的关系。例如:农民不喜欢观看悬疑片,而大学生更喜欢侦探片或纪录片。
下图显示了某特定年份每周用户对不同流派电影的平均评分趋势。从图表中可以看出,纪录片和犯罪电影是人们的最爱,而儿童电影的平均评分总是最低的。
下面的两个散点图用于并排比较,以推断男性和女性的评级之间的相关性。
左图:散点图显示男性和女性(所有电影)的平均评分呈线性增长趋势,图中高度集中的部分均匀分布在参考线的两侧,这表明除了少数电影收视率,男性和女性观影偏好趋同。
右图:散点图是通过仅隔离评级超过 400 次的电影而产生的。在这种情况下,我们也可以看到男性和女性的评分相似,这表明我们的初步推论是准确的。
我们讨论了 Python 如何使用 Kylinpy 库轻松地与 Apache Kylin 的 OLAP 技术集成,而 Kylinpy 库又用于在我们的示例电影数据集上运行高级分析。我们还使用 Pandas,Matplotlib 和 Seaborn 库来操作和可视化 Apache Kylin 多维数据集中的数据。
这样的分析让我们深入了解人们对不同电影类型的喜好随着时间的推移而变化。它还告诉我们不同电影类型变化趋势之间的关联度。像这样的见解可能对电影评论家有用。
如果您或您的团队在访问大量数据集时遇到问题,并希望利用 Kylin 的大数据 OLAP 方法进行机器学习或数据科学操作,那么 Apache Kylin(及其相关企业大数据平台 Kyligence)将为您提供帮助。
01 现象 社区小伙伴最近在为 Kylin 4 开发 Soft Affinity + Local Cache
01 背景 随着顺丰末端物流(末端物流主要分为对小哥、柜机、区域等的资源的管理和分批;对路径、排班、改派等信息
Apache Kylin 的今天 目前,Apache Kylin 的最新发布版本是 4.0.1。Apache
Kylin 入选《上海市重点领域(金融类)“十四五”紧缺人才开发目录》 数字经济已成为全球增长新动
在 Kyligence 主办的 Data & Cloud Summit 2021 行业峰会的「数字化转
近日由 Kyligence 主办的 Data & Cloud Summit 2021 行业峰会在上海成
近五年来,Kyligence 服务了金融、制造、零售、互联网等各个行业的龙头企业,我们在服务这些企业的过程中,
2021年1月14日,Kyligence 产品经理陈思捷开启了我们在 2021 年的首场线上分享,为大家介绍了
400 8658 757
工作日:10:00 - 18:00
已有账号? 点此登陆
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。
全行业落地场景演示
涵盖金融、零售、餐饮、医药、制造等多个行业,最贴合您的业务需求与场景。
Data + AI 应用落地咨询
与资深技术专家深入交流,助您的企业快速落地 AI 场景应用。
立即预约,您将获得
精准数据计算能力:
接入高精度数值计算大模型服务,为您的企业级AI应用提供强大支持。
个性化业务场景解决方案:
量身定制的计算模型和数据分析服务,切实贴合您的业务需求和应用场景。
Data + AI 落地应用咨询:
与资深专家深入探讨数据和 AI 如何帮助您的企业加速实现应用落地,构建更智能的数据驱动未来。
申请体验,您将获得
体验数据处理性能 2x 加速
同等规模资源、同等量级数据、同一套数据处理逻辑,处理耗时下降一半
专家支持
试用部署、生成数据、性能对比各操作环节在线支持