Kyligence AI 服务 - 让大模型完成准确、可靠的数值计算和回答! 立即了解更多
AI 数智助理
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Kyligence Turbo Kyligence Turbo
指标平台解决方案
OLAP 解决方案
行业解决方案
客户总览
金融
零售
制造
医药
其他
云平台
BI
寻求合作
资源
Kyligence Enterprise
Kyligence Zen
培训
Apache Kylin
Byzer
Gluten
博客
关于
市场活动
近日,Kyligence 合伙人兼副总裁李栋受邀出席 CSDN 云原生系列在线峰会。在第 13 期 “ 现代数据栈峰会 ”上,李栋从指标中台的趋势和背景出发,围绕指标中台的真实案例,对 Kyligence 实现指标中台的过程及提升数据分析 ROI 的经验进行了详细分享。
指标是衡量事物的标准,数据分析的关键就是找到正确指标并获得洞察,并开展经营决策。指标中台(Metrics Store)是当下流行的技术之一。
在传统的数据分析场景中,往往会把数据统一接入到一个数据平台,例如数据湖、数据仓库等技术。通过一系列 ETL 开发后,将数据对接到下游的 BI 或自研的数据应用,数据分析师或业务用户通过查看报表和数据应用来查看指标数据,并对指标进行洞察分析和开展业务决策。
这种情况下,所有业务指标分散存储在各个 BI 报表或应用系统当中,当指标数、用户数越来越多时,数据管理和指标管理会产生很大的混乱。例如指标在不同报表中出现同义不同名、同名不同义、数据口径不一致、时间对不齐等难题,极大降低了业务用户对数据的信心。
指标中台的出现,旨在通过一个平台统一管理所有业务指标,以及指标背后的数据。指标中台不仅可以解决前面提到的技术挑战,赋能业务人员更自助、更有信心地使用数据,还能帮助 IT 团队创造更高业务价值。
国内某一线互联网企业,早年开始数字化建设,并搭建了数据湖来汇总存储各个来源的数据。按照传统的方式,所有的源表(ODS表)落到数据湖上后,业务用户无法直接使用这些源表,需要经过 ETL 开发宽表和聚合表才能被下游业务使用。
这就带来了两方面的问题:
由此可见,影响数据分析 ROI 的障碍主要是:
传统在数据湖中加工和分析指标的方式,是经过 ETL 为每个指标开发宽表和聚合表(如下图所示)。虽然很多指标背后的数据是可以复用的,但因为需求来自不同业务部门,缺少数据共享,最终只能重复开发,生成大量冗余的宽表和聚合表。
使用指标中台后,所有的数据指标被统一管理,并形成指标体系,如基础指标、衍生指标等。如果不同的指标背后对应的数据模型是同一个,那么指标的加工和计算过程是可以复用的。如果是同一份数据按不同口径服务不同业务,则通过衍生指标灵活响应业务需求,既能满足业务多变的需求,又能避免数据冗余导致的宽表爆炸。
由此可见,在指标中台里“指标”成为数据和业务交互的主体,通过对“指标”的标准化,形成数据开发和管理的标准化。
下图展示的是某银行企业使用指标中台前的状况。银行业务人员需要对用户的消费行为进行分析,从交付指标到获得相关数据,通常需要 12 个工作日甚至更长时间。数据开发效率低、需求交付周期极长。
我们来看看该银行使用指标中台后的情况。如下图所示,指标中台允许非技术人员自助管理衍生指标,并通过拖拽现成指标的方式创建仪表板,端到端交付时间减少 50%,从需求到开发,流程轻松省时、企业人效大幅提升。
从技术角度来讲,指标中台的能力主要展现在四个方面。
从数据湖的表开始定义指标,包括基础指标和衍生指标,并将所有指标管理在一个平台中,实现业务指标的统一管理。
根据指标定义的逻辑对底层数据进行加工、预计算,并根据指标所在的数据模型进行合并,消除宽表爆炸。若是指标很少被访问或是不再被访问,可以自动清理指标数据的预计算结果。此外,系统也会智能地向用户推荐常用的或关联度高的指标,提升找指标的效率。
管理指标的目的是帮助企业实现业务目标管理的目的,因此通过管理目标的方式管理指标,形成指标体系,可帮助企业更好地达成目标。
当指标和目标完成定义,系统需要一个出口。通过标准的指标 API ,让用户轻松构建数据应用,为应用提供一致的数据来源,消除指标割裂和数据孤岛。
Kyligence 基于指标中台实践经验和 OLAP 基础能力,上线了智能指标驱动的管理和决策平台 Kyligence Zen。在本次演讲中,李栋以零售订单分析场景为例,演示了该产品的主要功能。
只需把订单数据上传到 S3 ,并输入 S3 链接地址,就可以快速把数据接入到指标中台。
通过 YAML 文件定义好销量和利润等零售业务指标,即可一键导入。通过这种方式,可以轻松地把业务指标从 BI 平台批量接入指标中台。
所有指标以卡片的方式被统一管理。对于零售企业,无论是集团管理人员还是门店店长,看到的都是同一套指标,以及同一套数据。
为了更好地使用指标支持业务决策,可以创建目标来管理指标,从业务角度管理指标体系。
所有指标还可以灵活地制作可视化仪表盘,方便业务人员自助查看指标和进行归因分析。除此之外,指标也可以通过 API 对接其他数据应用。
指标中台可有效解决数据湖上数据分析效率低下的问题,从而将 IT 团队从重复的报表开发工作中释放出来,投入到业务指标体系的管理和持续运营之中,并创造更多业务价值,大大提升企业的人效。
上海跬智信息技术有限公司 (Kyligence) 由 Apache Kylin 创始团队于 2016 年创办,致力于打造下一代企业级智能多维数据库,为企业简化数据湖上的多维数据分析(OLAP)。通过 AI 增强的高性能分析引擎、统一 SQL 服务接口、业务语义层等功能,Kyligence 提供成本最优的多维数据分析能力,支撑企业商务智能(BI)分析、灵活查询和互联网级数据服务等多类应用场景,助力企业构建更可靠的指标体系,释放业务自助分析潜力。
Kyligence 已服务中国、美国、欧洲及亚太的多个银行、证券、保险、制造、零售等行业客户,包括建设银行、浦发银行、招商银行、平安银行、宁波银行、太平洋保险、中国银联、上汽、Costa、UBS、MetLife 等全球知名企业,并和微软、亚马逊、华为、Tableau 等技术领导者达成全球合作伙伴关系。目前公司已经在上海、北京、深圳、厦门、武汉及美国的硅谷、纽约、西雅图等开设分公司或办事机构。
2024 年伊始,Kyligence 联合创始人兼 CEO 韩卿在公司内部的飞书订阅号发表了多篇 Rethin
在本轮评测中,我们从数据计算、数据洞察两个方面对大模型评测结果进行了归类,并提出不同方向的优化建议。
400 8658 757
工作日:10:00 - 18:00
已有账号? 点此登陆
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。
全行业落地场景演示
涵盖金融、零售、餐饮、医药、制造等多个行业,最贴合您的业务需求与场景。
Data + AI 应用落地咨询
与资深技术专家深入交流,助您的企业快速落地 AI 场景应用。
立即预约,您将获得
精准数据计算能力:
接入高精度数值计算大模型服务,为您的企业级AI应用提供强大支持。
个性化业务场景解决方案:
量身定制的计算模型和数据分析服务,切实贴合您的业务需求和应用场景。
Data + AI 落地应用咨询:
与资深专家深入探讨数据和 AI 如何帮助您的企业加速实现应用落地,构建更智能的数据驱动未来。
申请体验,您将获得
体验数据处理性能 2x 加速
同等规模资源、同等量级数据、同一套数据处理逻辑,处理耗时下降一半
专家支持
试用部署、生成数据、性能对比各操作环节在线支持