Kyligence AI 服务 - 让大模型完成准确、可靠的数值计算和回答! 立即了解更多
AI 数智助理
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Kyligence Turbo Kyligence Turbo
指标平台解决方案
OLAP 解决方案
行业解决方案
客户总览
金融
零售
制造
医药
其他
云平台
BI
寻求合作
资源
Kyligence Enterprise
Kyligence Zen
培训
Apache Kylin
Byzer
Gluten
博客
关于
市场活动
近几年,数据分析相关岗位需求呈爆发式增长,且大多还是高薪职业,让许多小伙伴纷纷半路“出家”开启数据分析师的求学之路。
很多年前,数据分析人员只要能灵活使用 Excel 就能找到一份不错的工作。后来,分析师如果能熟练操作 BI 可视化,能给老板一份漂亮的报表就可以成为公司里的明星员工。但在近几年,对于数据分析师来说除了要掌握基础的分析工具如 SQL、Python等,还得学习数据清洗、建模,还有一系列统计学概念和精确算法用于数据分析,可谓难上加难…
基于上述环境,市场上就催生出了一批「数据分析专家」,他们拥有专业分析技能与技术储备,但这样的人才对于企业来说却是又“贵”又“难招”。如果企业想要实现数字化转型,成本压力不言而喻;另一方面,Gartner 也在近几年多次指出未来企业的数字化发展在于「数据分析平民化」,也就是说企业管理者需要培养或者赋能更多业务一线的平民数据分析师,做到真正的从下至上实现用数据决策的战略方针。
在近期的线上分享中,Kyligence 产品总监何京珂就为大家介绍了在数据分析平民化的趋势席卷下,企业如何做到支撑日常上千名用户的查询分析?我们以市面上最流行的 BI 工具 Tableau 为例,将为大家介绍 Kyligence + Tableau 整体解决方案,更有 Demo 演示教学如何让一线业务分析师们只需“托拉拽”就能实现 PB 级数据量下的自助式分析!
企业实现数据分析平民化的必备要素就是自动化。这迎合了 Gartner 在 2019 年提出的 “Augmented Analytics” 观点,即增强分析。它将是未来数据分析的一个主流趋势将大范围得改革数据从管理、加工、分析这一大串链路中的人工工作。
过去我们为了服务数据分析,需要数据仓库专家来准备数据模型。这要求专家需要去了解现在这个业务的实际需要,例如哪些维度的数据需要被组合,用于分析什么场景等等。综合整理这些数据使用的模式 可能从中抽象提炼而形成模型。
有没有可能让上面这套流程自动化呢?
其实在企业内部,每一位员工都在使用他们自己的一套分析经验来做查询。在分析业务的当下其实就是将这些查询语句作为学习系统的输入。一个聪明的 AI 增强数据库产品就会很好的利用这些“群体智慧”来不断学习用户的行为习惯,从而找到共通点,进一步提炼出数据模型。
当这个模型经过自动化的数据准备和预计算以后就能建立预计算的多维模型,然后这些经过计算准备好的多维模型又可以通过统一的语义模型再暴露给企业内部一线业务人员来做数据的分析,业务人员的分析的方式和角度又将变成一次新的模式识别进行数据准备及加工,以上就形成一个分析自动化的闭环。在后台也可以通过分析师、工程师以及数据管理人员进行管理和调整。
另外,在这条链路中也能让专家与业务管理人员对机器学习的内容有技术进行模型的微调,从而提炼出符合业务的语义逻辑且具有可用性及智能的数据模型。通过这样一套自动化程度比较高的数据服务,能够有效地代替前面说到的类似手工作坊式的人工数据管理的工作。
接下来将为大家介绍作为大数据圈智能分析引擎的代表 Kyligence,结合 BI 圈炙手可热的 Tableau 为例,解析大数据架构下如何搭建一套高性能、高并发的自助式分析平台。
从底层架构来看,Kyligence 作为一个统一的 AI 增强型的数据管理和分析平台,可直接部署在本地或云端。
向下可对接关系型数据或 Hadoop 数据源,如 Hive 等,屏蔽底层数据源差异, 在 Kyligence 端统一建模,进行维度指标定义。向上通过 ODBC Driver 连接到Tableau Desktop 或 Tableau Server。Kyligence 也提供其他通用的接口对接 PowerBI,帆软,SmartBI 等 BI 产品进行数据分析。
Kyligence + Tableau 主要优势如下:
1)开发模式:减少重复劳动,提升效率
开发模式的最佳实践也是很多企业关心的问题,如何进行企业内各种职能角色的协同?我们结合现有客户的使用场景,提炼出了一套开发模式可供大家参考。首先抽象出四类角色:开发人员、建模人员、分析师、业务人员。这四类角色并一定要严格对应四个人,可能有些企业一个开发人员就负责了准备数据、建模、分析的一整套工作,来满足业务人员的需求,可依据企业实际情况灵活安排。
2)权限集成:严格把控数据安全,数据“各有所用”
考虑到企业数据的隐私安全,Kyligence 提供针对项目级/表级/行列级的细粒度数据访问控制。为不同用户提供不同的数据视图。
1)背景介绍
这是一家大型股份制银行,该机构需要基于卡交易流水从多维度进行分析和指标统计,主要的维度和指标包括日期((年,月,日,周,天)、卡属性,品牌,地区,机构,交易笔数,交易金额等。
2)业务面临的痛点
在过去由于使用的数据仓库的限制,该银行需要对不同的业务主体的数据单独建立数据模型,通过 SQL 取数的方式为业务提供分析时使用的数据,开发成本高,交付周期长。
通过新方案,该银行可以通过 Kyligence 构建统一的数据模型,通过导出 TDS 的功能将数据模型同步到 Tableau 实现一个模型分析众多分析报告的效果。
另一方面,在企业内部,由于各个部门对数据指标定义不同造成数据不可信的问题也时有发生。现在可以通过 Kyligence 的统一模型,该银行实现了对业务分析的口径与指标的统一。
3)使用 Kyligence 后的查询效果
下图可以看到目前该银行每个月有 5000+ 活跃用户,每月总查询数在100 + 万,90%以上查询 < 1秒。通过无缝对接 Tableau,真正做到了赋能业务自助式分析能力。
以上就是我们介绍的整套 Kyligence + Tableau 自助式分析的方案,感兴趣的小伙伴欢迎免费试用!
近年来,随着商业环境的竞争日益激烈,企业对于实时数据服务的需求急剧增加。Kyligence 在服务众多客户的过
数据要素在银行各业务领域和流程中发挥着至关重要的作用,面对激烈的市场竞争和客户需求,银行越来越注重从数据管理中
作为一名消费者,炎热的夏天我们会走进一家便利店,从冰柜中选出一瓶汽水;下午工作有点累了,我们会在公司的自动贩卖
2024 年伊始,Kyligence 联合创始人兼 CEO 韩卿(Luke)分享了对 AI 与数据行业的一些战
房地产行业是我国国民经济中的重要支柱产业之一,在房地产市场供求关系发生重大变化的当下,房企面临多重挑战。Kyl
今年年初,Kyligence 高级副总裁兼合伙人葛双寅(Silas Ge)受邀在阿斯利康“跃行致远三十周年年会
2024 年伊始,Kyligence 联合创始人兼 CEO 韩卿在公司内部的飞书订阅号发表了多篇 Rethin
400 8658 757
工作日:10:00 - 18:00
已有账号? 点此登陆
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。
全行业落地场景演示
涵盖金融、零售、餐饮、医药、制造等多个行业,最贴合您的业务需求与场景。
Data + AI 应用落地咨询
与资深技术专家深入交流,助您的企业快速落地 AI 场景应用。
立即预约,您将获得
精准数据计算能力:
接入高精度数值计算大模型服务,为您的企业级AI应用提供强大支持。
个性化业务场景解决方案:
量身定制的计算模型和数据分析服务,切实贴合您的业务需求和应用场景。
Data + AI 落地应用咨询:
与资深专家深入探讨数据和 AI 如何帮助您的企业加速实现应用落地,构建更智能的数据驱动未来。
申请体验,您将获得
体验数据处理性能 2x 加速
同等规模资源、同等量级数据、同一套数据处理逻辑,处理耗时下降一半
专家支持
试用部署、生成数据、性能对比各操作环节在线支持