Kyligence AI 服务 - 让大模型完成准确、可靠的数值计算和回答! 立即了解更多
AI 数智助理
Kyligence Zen Kyligence Zen
Kyligence Enterprise Kyligence Enterprise
Kyligence Turbo Kyligence Turbo
指标平台解决方案
OLAP 解决方案
行业解决方案
客户总览
金融
零售
制造
医药
其他
云平台
BI
寻求合作
资源
Kyligence Enterprise
Kyligence Zen
培训
Apache Kylin
Byzer
Gluten
博客
关于
市场活动
Kylin on HBase 方案经过长时间的发展已经比较成熟,但也存在着局限性,因此,Kyligence 推出了 Kylin on Parquet 方案(了解详情戳此处)。通过标准数据集测试,与仍采用 Kylin on HBase 方案的 Kylin 3.0 相比,Kylin on Parquet 的构建引擎性能有了很大的提升,对于复杂查询也有更好的性能表现。
本篇文章主要通过使用标准 SSB 数据集和 TPC-H 数据集,来分别获取 Kylin on Parquet 和 Kylin 3.0 构建引擎以及查询引擎的性能数据,然后进行对比分析,让用户们能够更清楚地了解到当前 Kylin on Parquet 相对于 Kylin 3.0(仍采用 Kylin on HBase )的优势和不足。
Kyligence 公司研发了适用于 Kylin 的 SSB 和 TPC-H 数据集工具,并且包含了标准 SQL,源码仓库地址如下:
01
测试环境配置
Hadoop 集群:
Kylin 3.0 使用的是 MapReduce 引擎。Kylin on Parquet 目前只支持内部定制版本的 Spark 引擎,定制版相对于社区版主要是做了性能方面的优化,其他方面与社区版 Spark 并没有区别。
02
构建性能对比
Over SSB
下面两个图分别表示构建时间和构建完成后占用存储空间的对比。我们可以看到在 SSB 6000 万和 9000 万数据量下,新的构建引擎构建速度快了一倍,最终占用存储空间也减少了接近一倍。
值得一提的是,Kylin on Parquet 最终构建的数据只包含 HDFS 上的数据,由于 Kylin on HBase cuboid 文件构建完成之后 HDFS 上的文件需要转换为 HFile,而且为了 merge 准备,HDFS 上的数据默认是不会清除的,所以实际存储还会多一倍空间;而使用 Parquet 后,只需要一份数据即可以用于查询,也可以用于 segment 合并,所以总体对比,Kylin on Parquet 的占用空间大约只有 Kylin on HBase 存储的 1/3 到 1/4 !
构建完成后前端页面会显示 Cube 的大小,如下图所示:
△ Kylin on Parquet
△ Kylin 3.0
03
查询性能对比
Kylin on Parquet 的查询引擎会在第一次查询的时候在 YARN 上创建一个常驻进程,专门用来处理查询任务,所以第一次查询会比较慢(初始化过程大约 20 秒),这里的测试并没有将第一次查询时间统计在内。
最近一周,查询引擎兼容性的问题也得到了进一步的修复,目前大部分 SQL 查询包括 CountDistinct, TopN, Percentile 等目前都已经能够支持。
我们使用 SSB 数据集(9000万行)和TPC-H(1200万行)官方标准 SQL 进行查询响应时间测试,查询响应时间越低,查询引擎性能表现越好。两个数据集的标准查询 SQL 可以在文章开始提到的 SSB 和 TPC-H 数据集工具仓库中找到。
从下图中我们可以看到对于 SSB 数据集, Kylin on Parquet 查询响应要比 Kylin 3.0 的要慢,但是大部分的查询还是能够在 1 秒内返回。
Over TPC-H
因为 TPC-H 的主要目的是测试数据库系统复杂查询的响应时间,所以 TPC-H 数据集的 SQL 更加复杂,要求更高,从下图中可以看到 Kylin on Parquet 对查询复杂的 SQL 处理时间更快,具有明显优势。
04
总结
通过 Kylin on Parquet 和 Kylin 3.0 查询构建引擎的性能对比数据我们能够看到,Kylin on Parquet 的构建引擎性能有了很大的提升,构建时间和存储空间都减少了接近一倍。从 SSB 数据集查询对比结果来看,查询引擎对于简单的查询请求和 Kylin 3.0 有一定差距,但是大部分还是能够做到秒级响应。而对于 TPC-H 数据集测试使用的比较复杂的 SQL 来说,一般后计算会比较多,新的查询引擎会有更好的性能表现。
目前, Kylin on Parquet 方案(了解详情戳此处)还处在不断完善的阶段,欢迎大家来体验。最后附上 GitHub 仓库地址:https://github.com/Kyligence/kylin-on-parquet-v2.git。
大家有问题可以提 issue 和 pr,也欢迎大家加一下上图的微信群,一起讨论完善。
近年来,随着商业环境的竞争日益激烈,企业对于实时数据服务的需求急剧增加。Kyligence 在服务众多客户的过
数据要素在银行各业务领域和流程中发挥着至关重要的作用,面对激烈的市场竞争和客户需求,银行越来越注重从数据管理中
作为一名消费者,炎热的夏天我们会走进一家便利店,从冰柜中选出一瓶汽水;下午工作有点累了,我们会在公司的自动贩卖
2024 年伊始,Kyligence 联合创始人兼 CEO 韩卿(Luke)分享了对 AI 与数据行业的一些战
房地产行业是我国国民经济中的重要支柱产业之一,在房地产市场供求关系发生重大变化的当下,房企面临多重挑战。Kyl
今年年初,Kyligence 高级副总裁兼合伙人葛双寅(Silas Ge)受邀在阿斯利康“跃行致远三十周年年会
2024 年伊始,Kyligence 联合创始人兼 CEO 韩卿在公司内部的飞书订阅号发表了多篇 Rethin
400 8658 757
工作日:10:00 - 18:00
已有账号? 点此登陆
预约演示,您将获得
完整的产品体验
从数据导入、建模到分析的全流程操作演示。
行业专家解惑
与资深行业专家的交流机会,解答您的个性化问题。
请填写真实信息,我们会在 1-2 个工作日内电话与您联系。
全行业落地场景演示
涵盖金融、零售、餐饮、医药、制造等多个行业,最贴合您的业务需求与场景。
Data + AI 应用落地咨询
与资深技术专家深入交流,助您的企业快速落地 AI 场景应用。
立即预约,您将获得
精准数据计算能力:
接入高精度数值计算大模型服务,为您的企业级AI应用提供强大支持。
个性化业务场景解决方案:
量身定制的计算模型和数据分析服务,切实贴合您的业务需求和应用场景。
Data + AI 落地应用咨询:
与资深专家深入探讨数据和 AI 如何帮助您的企业加速实现应用落地,构建更智能的数据驱动未来。
申请体验,您将获得
体验数据处理性能 2x 加速
同等规模资源、同等量级数据、同一套数据处理逻辑,处理耗时下降一半
专家支持
试用部署、生成数据、性能对比各操作环节在线支持